Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Br J Anaesth ; 129(5): 679-692, 2022 11.
Article in English | MEDLINE | ID: covidwho-1966391

ABSTRACT

BACKGROUND: We performed a systematic review of mechanically ventilated patients with COVID-19, which analysed the effect of tracheostomy timing and technique (surgical vs percutaneous) on mortality. Secondary outcomes included intensive care unit (ICU) and hospital length of stay (LOS), decannulation from tracheostomy, duration of mechanical ventilation, and complications. METHODS: Four databases were screened between January 1, 2020 and January 10, 2022 (PubMed, Embase, Scopus, and Cochrane). Papers were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Population or Problem, Intervention or exposure, Comparison, and Outcome (PICO) guidelines. Meta-analysis and meta-regression for main outcomes were performed. RESULTS: The search yielded 9024 potentially relevant studies, of which 47 (n=5268 patients) were included. High levels of between-study heterogeneity were observed across study outcomes. The pooled mean tracheostomy timing was 16.5 days (95% confidence interval [CI]: 14.7-18.4; I2=99.6%). Pooled mortality was 22.1% (95% CI: 18.7-25.5; I2=89.0%). Meta-regression did not show significant associations between mortality and tracheostomy timing, mechanical ventilation duration, time to decannulation, and tracheostomy technique. Pooled mean estimates for ICU and hospital LOS were 29.6 (95% CI: 24.0-35.2; I2=98.6%) and 38.8 (95% CI: 32.1-45.6; I2=95.7%) days, both associated with mechanical ventilation duration (coefficient 0.8 [95% CI: 0.2-1.4], P=0.02 and 0.9 [95% CI: 0.4-1.4], P=0.01, respectively) but not tracheostomy timing. Data were insufficient to assess tracheostomy technique on LOS. Duration of mechanical ventilation was 23.4 days (95% CI: 19.2-27.7; I2=99.3%), not associated with tracheostomy timing. Data were insufficient to assess the effect of tracheostomy technique on mechanical ventilation duration. Time to decannulation was 23.8 days (95% CI: 19.7-27.8; I2=98.7%), not influenced by tracheostomy timing or technique. The most common complications were stoma infection, ulcers or necrosis, and bleeding. CONCLUSIONS: In patients with COVID-19 requiring tracheostomy, the timing and technique of tracheostomy did not clearly impact on patient outcomes. SYSTEMATIC REVIEW PROTOCOL: PROSPERO CRD42021272220.


Subject(s)
COVID-19 , Critical Illness , Humans , Critical Illness/therapy , Time Factors , Tracheostomy/methods , Respiration, Artificial/methods , Length of Stay
2.
J Clin Med ; 11(15)2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1957361

ABSTRACT

The SARS-CoV-2 pandemic heavily impacted healthcare workers, increasing their physical and psychological workload. Specifically, COVID-19 patients' airway management is definitely a challenging task regarding both severe and acute respiratory failure and the risk of contagion while performing aerosol-generating procedures. The category of anesthesiologists and intensivists, the main actors of airway management, showed a poor psychological well-being and a high stress and burnout risk. Identifying and better defining the specific main SARS-CoV-2-related stressors can help them deal with and effectively plan a strategy to manage these patients in a more confident and safer way. In this review, we therefore try to analyze the relevance of human factors and non-technical skills when approaching COVID-19 patients. Lessons from the past, such as National Audit Project 4 recommendations, have taught us that safe airway management should be based on preoperative assessment, the planning of an adequate strategy, the optimization of setting and resources and the rigorous evaluation of the scenario. Despite, or thanks to, the critical issues and difficulties, the "take home lesson" that we can translate from SARS-CoV-2 to every airway management is that there can be no more room for improvisation and that creating teamwork must become a priority.

3.
J Anesth Analg Crit Care ; 2(1): 3, 2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1636933

ABSTRACT

BACKGROUND: Airway management for thoracic surgery represents a high risk setting for SARS-CoV-2 infection diffusion due to complex and invasive airway instrumentation and techniques. RESULTS: An 18-item questionnaire was submitted to the 56 members of the Thoracic subcommittee of the SIAARTI Cardio-Thoraco-Vascular Research Group to provide a snapshot of current situation and national variability of devices and procedures for airway management during the COVID-19 pandemic. The response rate was 64%. Eighty-three percent of anesthetists declared that they modified their airway management strategies. The Hospital Management considered necessary to provide a complete level 3 personal protective equipment for thoracic anesthetists only in 47% of cases. Double-lumen tube and bronchial blocker were preferred by 53% and 22% of responders to achieve one-lung ventilation respectively. Over 90% of responders considered the videolaryngoscope with separate screen and rapid sequence induction/intubation useful to minimize the infection risk. Thirty-nine percent of participants considered mandatory the bronchoscopic check of airway devices. Vivasight-DL was considered comfortable by more than 50% of responders while protective box and plastic drape were judged as uncomfortable by most of anesthetists. CONCLUSIONS: The survey reveals many changes in the clinical practice due to SARS-CoV-2 outbreak. A certain diffusion of new devices such as the VivaSight-DL and barrier enclosure systems emerged too. Finally, we found that most of Italian hospitals did not recognize thoracic anesthesia as a high-risk specialty for risk of virus diffusion.

4.
J Anesth Analg Crit Care ; 1(1): 13, 2021 Nov 13.
Article in English | MEDLINE | ID: covidwho-1518330

ABSTRACT

Obesity is associated to an increased risk of morbidity and mortality due to respiratory, cardiovascular, metabolic, and neoplastic diseases. The aim of this narrative review is to assess the physio-pathological characteristics of obese patients and how they influence the clinical approach during different emergency settings, including cardiopulmonary resuscitation. A literature search for published manuscripts regarding emergency and obesity across MEDLINE, EMBASE, and Cochrane Central was performed including records till January 1, 2021. Increasing incidence of obesity causes growth in emergency maneuvers dealing with airway management, vascular accesses, and drug treatment due to both pharmacokinetic and pharmacodynamic alterations. Furthermore, instrumental diagnostics and in/out-hospital transport may represent further pitfalls. Therefore, people with severe obesity may be seriously disadvantaged in emergency health care settings, and this condition is enhanced during the COVID-19 pandemic, when obesity was stated as one of the most frequent comorbidity. Emergency in critical obese patients turns out to be an intellectual, procedural, and technical challenge. Organization and anticipation based on the understanding of the physiopathology related to obesity are very important for the physician to be mentally and physically ready to face the associated issues.

5.
Ear Nose Throat J ; : 1455613211029783, 2021 Jul 28.
Article in English | MEDLINE | ID: covidwho-1329093

ABSTRACT

OBJECTIVES: The purpose of this observational retrospective study was to evaluate, in patients with a severe acute respiratory syndrome coronavirus 2 infection, the association between the severity of coronavirus disease 2019 (COVID-19) respiratory illness and the risk of infected patients to develop obstructive sleep apnea (OSA). METHODS: Ninety-six patients with confirmed COVID-19 infection were enrolled in the study. The STOP-BANG questionnaire to investigate the risk of the OSA syndrome was filled in by the patients at admission. The enrolled patients were divided into 2 groups according to the respiratory disease: group 1 (72 patients), hospitalized patients undergoing conventional oxygen therapy; group 2 (24 patients), patients requiring enhanced respiratory support. STOP-BANG results of these 2 groups were compared to observe whether patients with high OSA risk more frequently presented a severe form of COVID-19. RESULTS: 41.6% of the patients in group 2 had a STOP-BANG score between 5 and 8 (high risk of having apnea); in contrast, 20.8% of the patients in group 1 had a STOP-BANG score between 5 and 8, with a statistically significant difference between the 2 groups (P = .05). A complementary trend was observed regarding the proportion of patients in the range 0 to 2, which classifies patients at a low risk of OSA (48.6% vs 20.8% for groups 1 and 2, P = .01). CONCLUSIONS: According to our data, the chances of having a severe case of COVID-19 should be considered in patients at high risk of OSA. CURRENT KNOWLEDGE/STUDY RATIONALE: Emerging research suggests that OSA could represent a potentially important risk factor for the severe forms of COVID-19. The purpose of this observational retrospective study was to evaluate the potential association between OSA and the severity of COVID-19 disease. STUDY IMPACT: According to our data, the likelihood of contracting a severe form of COVID-19 disease should be considered in patients at high risk of OSA.

SELECTION OF CITATIONS
SEARCH DETAIL